

delivering a better worl

Integration of Design Factors into Post-Construction Ecological Restoration QA/QC

Raymond D'Hollander, P.E., P.Eng. and Anne Burnham 08.29.18

Agenda

- Restoration is a multi-decade process
- Communication
- Information handoffs
- Typical Challenges
- Vegetation as condition indicators
- Conclusions

- Complexity
 - Numerous different plants and planting environments
- Evolution
 - The initial planting is just the beginning
 - Trees take decades to establish and create their own environment
- Maintenance and monitoring is not just mowing
 - Easy to get off-track during site evolution
- Multi-disciplinary staff necessary
 - Communication is critical
 - Knowledge is lost with personnel and team changes

Restoration is a multi-decade process

"Cover crops" needed for decades to establish a forest

Early ecological functions are important - may differ from long-term goal

Handoffs are communication opportunities

• Geometry

- Site designed to work when constructed
- Natural processes can change topography over time

Soils

- Construction specifications are focused on initial gradation and properties
- USDA/wetland soil taxonomy requires in situ weathering over time
- Hydrology
 - Design analyses are focused on flooding and erosion control
 - Site evolution changes soil and vegetation retention of moisture
- Vegetation
 - Initial establishment to prevent erosion
 - Vegetation will evolve for years, decades, and centuries

Available Design & Construction Information

- Remedial Design Report
 - Goals and objectives
 - Analyses
 - Drawings
 - Specifications
 - Stormwater/Erosion Control

- Construction Completion Reports
 - As-built geometries
 - Design changes
 - Material submittals
 - Daily field reports with photos
 - Regulatory acceptance

Document filing & retention is under-appreciated

Handoffs from design to post-construction

PARSONS

Soil is important

Erosion, water retention, pH, etc.

Hydrology is important

Is it working as expected?

You probably won't get there

- Vertical datum
 - Site specific
 - Local
 - National Geodetic Survey: NGVD29 vs. NAVD88
 - NGS datum conversion program: <u>https://www.ngs.noaa.gov/TOOLS/Vertcon/vertcon.html</u>

• Horizontal coordinates

- Site specific
- Local
- State plane
- Latitude/Longitude
- Linear stationing (highways, railroads, rivers, pipelines)
- Units
 - Metric, US, Imperial

5 years of design and construction and nobody ever mentioned "carp"

Design seed mixes to help identify actual site conditions

• Plants sensitive to:

- Water
- Soils
- Nutrients
- Light
- Include indicator plants to ID micro-variations:
 - Hydrology
 - Salinity
 - pH
 - Well-drained soil
 - Poorly-drained soil
- Increases bio-diversity
- Identify trends in QA/QC data
 - Define adaptive management opportunities

Vegetation as indicator example

Year 1: Alisma subcordatum Salinity < 1 ppt

Year 2: Typha latifolia

1 ppt < Salinity < 7 ppt

Utility work over winter

Likely re-directed salt seep

- Site restoration includes long-term restoration
 - Duration and multi-discipline requires communication focus
- Design needs to set up post-construction monitoring and QA/QC
- Design and construction documentation is valuable
 - Hand off to post-construction team
- Vegetation is "free" site instrumentation
 - Incorporate indicator species in design
- Site variations and evolution require adaptive management